This book proposed a modified artificial bee colony algorithm for job scheduling problem. Results of the proposed algorithm shows that the efficiency of proposed algorithm is better then the original Genetic Algorithm. This algorithm produced better results for those problems that do not generate exact solution.Finally, Overall motive of these type of algorithms are to get more optimized results from the previous one. Silent Features are: More efficient algorithm, Less time complexity, Easily to understand the proposed concept, Simple language, Helpful for generating new ideas.

Swarm Intelligence becomes a crucial importance for the solution of many problems which cannot be easily solved with many classical mathematical techniques. The main concern while searching for new nature based solution is population. The collective behaviour of swarm’s or any individuals inspire us to develop optimization-based algorithm. Artificial Bee Colony Algorithm (ABC) is the most recent advance technique to solve many mathematical problems and engineering problems. The inspiration behind this is Nature, where problems are solved on the basis of behavior of swarms, ants, bees etc. The foraging behavior of bees plays an important role while approaching ABC algorithms.

Ant colony algorithm and Genetic algorithm are considered as the most important and advanced Evolutionary algorithms. These two algorithms have got extensive real world applications and solutions for optimization problems. One such type is the multiple travelling salesmen problem. The research finds a better solution for this problem and further research on these algorithm would find even more better solutions.

Scheduling problems occur in all economic domains from computer engineering to manufacturing techniques. These problems are generally defined as decision making problems with the aim of optimizing one or more scheduling criteria. Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. It is more complex than job shop scheduling problem, because of the additional need to determine the assignment of operations to machines. FJSSP is very important in both fields of production management and combinatorial optimization. Owing to the high computational complexity, it is quite difficult to achieve an optimal solution with the traditional techniques. In this connection, suitable algorithms (or) techniques are required to solve the FJSSP. This book provides wide knowledge in the metaheuristics with scheduling field.

Scheduling is the central concept used in operating system. It helps in choosing the processes for execution. There are many scheduling algorithms available for a multi-programmed operating system like FCFS, SJF, Priority, Round Robin etc. We mainly focused on Round Robin scheduling algorithm. We proposed a new algorithm as titled “A NOVEL APPROACH FOR SCHEDULING”. It is the combination of Round Robin scheduling algorithm and Dynamic Time Quantum. We get better result in terms of Waiting Time, Turnaround Time and number of Context Switch than the Round Robin scheduling algorithm using static time quantum, Average Mid Max Round Robin scheduling algorithm and Min-Max Round Robin scheduling algorithm.

Multiprocessors have become powerful computing means for running real-time applications and their high performance depends greatly on parallel and distributed network environment system. Consequently, several methods have been developed to optimally tackle the multiprocessor task scheduling problem which is called NP-hard problem. To address this issue, this research presents two approaches. The first approach is Modified List Scheduling Heuristic (MLSH). The second approach is hybrid approach which is composed of Genetic Algorithm (GA) and MLSH for task scheduling in multiprocessor system.

Grid computing is a high performance computing environment to solve large-scale computational demands. Computational grids has emerged as a next generation computing platform which is a collection of heterogeneous computing resources connected by a network across dynamic and geographically dispersed organizations, to form a distributed high performance computing infrastructure. Our work is mainly based on job-grouping approach for fine-grained job scheduling in computational grids. Resources in computational grid are heterogeneous in nature, owned and managed by different organizations with different allocation policies. In our scheduling algorithm jobs are scheduled based on resources computational and communication capabilities. Independent fine-grained jobs are grouped together based on the chosen resources characteristics, to maximize resource utilization and minimize processing time and cost. The performance of the algorithm is evaluated based on above mentioned performance parameters and compared with other existing fine-grained job scheduling strategies using GridSim toolkit.

The book describes the research work done by author during his PhD. It is suitable as reference book in the advance course of real-time system as well as for the researchers in the same field. It discusses the scheduling problem for real-time operating systems. Dynamic scheduling algorithms can not perform well during overloaded condition. The objective of the book is to get optimum performance in underloaded condition and to improve the performance of real-time systems in overloaded conditions. Initially, new algorithms are proposed with modifications in the conventional EDF algorithm. Then, ACO based dynamic scheduling algorithm for real-time operating systems has been proposed.An adaptive scheduling algorithm is also proposed as pure ACO based algorithm takes more time for execution. All algorithms are tested on single processor system, tightly coupled multiprocessor system and loosely coupled multiprocessor real-time systems. The book covers an important application of ACO in real-time scheduling.

This work develops an adaptive scheduling algorithm for real-time energy harvesting embedded systems. The algorithm considers both energy and timing constraint of the energy harvesting systems unlike most of the scheduling algorithms. An AFP prediction algorithm was also proposed for a better energy prediction for each slot. Based on this information the initial scheduling, which was designed using the information given by EWMA prediction algorithm, was rescheduled. The purpose was successfully achieved by compensating the extra/less energy harvested from the environment in such a way so that system wide efficiency can be achieved. Using adaptive scheduling we were successfully able to decrease the deadline miss rate of the tasks up to 15-30% in addition to the results accomplished by initial scheduling depending on the amount of energy harvested.

Update Vehicle Traffic Routing Using Ant Colony Optimization Algorithm is to implement the solution of combinatorial problem, based on the heuristic behavior of ant. This paper focuses on a highly developed solution procedure using ACO algorithm. This helps to solve routing problems easily. It also reflects the method considering flow, distance, cost, and emergency etc. Here, a new algorithm named UVTR (Update Vehicle Traffic Routing) is represented to overcome the complexity of the previous algorithm. It yields the typical process for removing traffic problems in case of flow, distance, cost etc. This formulation is represented with systematic rules based case study for the Dhaka City.

This book investigates the problem of user selection and scheduling in MIMO-BC. A low-complexity user selection algorithm is proposed when the BS has perfect channel-state information and the performance of the proposed algorithm with linear and non-linear precoding techniques is evaluated. A signalling scheme for the MIMO-BC systems in the absence of perfect CSIT is presented. A novel transmit-antenna selection scheme is proposed. The performance of the proposed scheme with different user selection algorithms and linear receivers is evaluated. The book considers a cross-layer scheduling approach in order to provide QoS guarantees to the users. A scheduling algorithm, multi-user ?-Rule scheduling, is proposed with the capability of maximizing the system throughput and providing QoS to the users. The effect of rate estimation on the performance of the scheduling algorithm is analyzed along with the effect of the variability in the allocated rates on the mean queue lengths of the users. It is shown that by increasing the fairness, the variability in rate allocation decreases, which results in smaller queue sizes for the users with marginal reduction in the sum-capacity of the system.

In this literature, the author evaluates some traditional contentious and non-contentious channel access scheduling algorithms and exposes their inadequacy when minimizing lengthy delays in a multimedia cellular environment. Addressing these inadequacies, a novel approach based on a modified operating systems process scheduling algorithm is proposed. The resulting Delay Weighted Priority Scheduling (DWPS) algorithm is evaluated in comparison to the traditional round-robin and random access scheduling algorithms in a simulated multimedia cellular environment and demonstrates a marked improvement in performance.

The resource-constrained project scheduling problem (RCPSP) aims to find a schedule of minimum makespan by starting each activity such that resource constraints and precedence constraints are respected. However, as the problem is NP-hard in the strong sense, the performance of exact procedures is limited and can only solve small-sized project networks. In this study, the proposed genetic algorithm (GA) aims to find near-optimal solutions and also overcomes the poor performance of the exact procedures for large-sized project networks. The proposed algorithm employs two independent populations: left population that consist of left-justified (forward) schedules and right population that consist of right-justified (backward) schedules. The repeated cycle updates the left (right) population by maintaining it with transformed right (left) individuals. By doing so, the algorithm uses two different scheduling characteristics. Also, the algorithm provides a new two-point crossover operator that selects the parents according to their resource requirement mechanism. The experiment results show that the suggested algorithm outperforms the well-known commercial software packages.

A scheduling algorithm schedules a set of tasks in such way that the tasks are completed before their deadlines reached. There are varieties of algorithms for scheduling of periodic tasks on multiprocessor under partitioning scheme or global scheduling scheme. The most common scheduling algorithms are: Rate Monotonic (RM), Deadline Monotonic (DM), Earliest Deadline First (EDF) and Least Laxity First (LLF). In this book, we have proposed a new algorithm titled as D_EDF which is modified conventional EDF algorithm. The proposed algorithm along with EDF, LLF, RM, DM algorithms are simulated and tested for independent, preemptive, periodic tasks on tightly coupled real-time multiprocessor system under global scheduling. From experiments and result analysis it concludes that the proposed algorithm is very efficient in both underloaded and overloaded conditions. The algorithm proposed in this book; perform quite well during overloaded conditions. The algorithm is truly dynamic as it can work with available number of processors.

## modifed artificial bee colony algorithm for job scheduling problem в наличии / купить интернет-магазине

## Modifed Artificial Bee Colony Algorithm for Job Scheduling Problem

This book proposed a modified artificial bee colony algorithm for job scheduling problem. Results of the proposed algorithm shows that the efficiency of proposed algorithm is better then the original Genetic Algorithm. This algorithm produced better results for those problems that do not generate exact solution.Finally, Overall motive of these type of algorithms are to get more optimized results from the previous one. Silent Features are: More efficient algorithm, Less time complexity, Easily to understand the proposed concept, Simple language, Helpful for generating new ideas.

## A Hybrid Best-So-Far Artificial Bee Colony Algorithm

Swarm Intelligence becomes a crucial importance for the solution of many problems which cannot be easily solved with many classical mathematical techniques. The main concern while searching for new nature based solution is population. The collective behaviour of swarm’s or any individuals inspire us to develop optimization-based algorithm. Artificial Bee Colony Algorithm (ABC) is the most recent advance technique to solve many mathematical problems and engineering problems. The inspiration behind this is Nature, where problems are solved on the basis of behavior of swarms, ants, bees etc. The foraging behavior of bees plays an important role while approaching ABC algorithms.

## Evolutionary Algorithms for Multiple Travelling Salesmen Problem

Ant colony algorithm and Genetic algorithm are considered as the most important and advanced Evolutionary algorithms. These two algorithms have got extensive real world applications and solutions for optimization problems. One such type is the multiple travelling salesmen problem. The research finds a better solution for this problem and further research on these algorithm would find even more better solutions.

## Metaheuristics for FJSSP Problems

Scheduling problems occur in all economic domains from computer engineering to manufacturing techniques. These problems are generally defined as decision making problems with the aim of optimizing one or more scheduling criteria. Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. It is more complex than job shop scheduling problem, because of the additional need to determine the assignment of operations to machines. FJSSP is very important in both fields of production management and combinatorial optimization. Owing to the high computational complexity, it is quite difficult to achieve an optimal solution with the traditional techniques. In this connection, suitable algorithms (or) techniques are required to solve the FJSSP. This book provides wide knowledge in the metaheuristics with scheduling field.

## A Novel Approach For Scheduling

Scheduling is the central concept used in operating system. It helps in choosing the processes for execution. There are many scheduling algorithms available for a multi-programmed operating system like FCFS, SJF, Priority, Round Robin etc. We mainly focused on Round Robin scheduling algorithm. We proposed a new algorithm as titled “A NOVEL APPROACH FOR SCHEDULING”. It is the combination of Round Robin scheduling algorithm and Dynamic Time Quantum. We get better result in terms of Waiting Time, Turnaround Time and number of Context Switch than the Round Robin scheduling algorithm using static time quantum, Average Mid Max Round Robin scheduling algorithm and Min-Max Round Robin scheduling algorithm.

## Load Balancing in Multiprocessing Systems

Multiprocessors have become powerful computing means for running real-time applications and their high performance depends greatly on parallel and distributed network environment system. Consequently, several methods have been developed to optimally tackle the multiprocessor task scheduling problem which is called NP-hard problem. To address this issue, this research presents two approaches. The first approach is Modified List Scheduling Heuristic (MLSH). The second approach is hybrid approach which is composed of Genetic Algorithm (GA) and MLSH for task scheduling in multiprocessor system.

## Job-Grouping Based Scheduling Algorithm for Computational Grids

Grid computing is a high performance computing environment to solve large-scale computational demands. Computational grids has emerged as a next generation computing platform which is a collection of heterogeneous computing resources connected by a network across dynamic and geographically dispersed organizations, to form a distributed high performance computing infrastructure. Our work is mainly based on job-grouping approach for fine-grained job scheduling in computational grids. Resources in computational grid are heterogeneous in nature, owned and managed by different organizations with different allocation policies. In our scheduling algorithm jobs are scheduled based on resources computational and communication capabilities. Independent fine-grained jobs are grouped together based on the chosen resources characteristics, to maximize resource utilization and minimize processing time and cost. The performance of the algorithm is evaluated based on above mentioned performance parameters and compared with other existing fine-grained job scheduling strategies using GridSim toolkit.

## Dynamic Scheduling for Real-Time Systems

The book describes the research work done by author during his PhD. It is suitable as reference book in the advance course of real-time system as well as for the researchers in the same field. It discusses the scheduling problem for real-time operating systems. Dynamic scheduling algorithms can not perform well during overloaded condition. The objective of the book is to get optimum performance in underloaded condition and to improve the performance of real-time systems in overloaded conditions. Initially, new algorithms are proposed with modifications in the conventional EDF algorithm. Then, ACO based dynamic scheduling algorithm for real-time operating systems has been proposed.An adaptive scheduling algorithm is also proposed as pure ACO based algorithm takes more time for execution. All algorithms are tested on single processor system, tightly coupled multiprocessor system and loosely coupled multiprocessor real-time systems. The book covers an important application of ACO in real-time scheduling.

## Adaptive Energy Management Scheme

This work develops an adaptive scheduling algorithm for real-time energy harvesting embedded systems. The algorithm considers both energy and timing constraint of the energy harvesting systems unlike most of the scheduling algorithms. An AFP prediction algorithm was also proposed for a better energy prediction for each slot. Based on this information the initial scheduling, which was designed using the information given by EWMA prediction algorithm, was rescheduled. The purpose was successfully achieved by compensating the extra/less energy harvested from the environment in such a way so that system wide efficiency can be achieved. Using adaptive scheduling we were successfully able to decrease the deadline miss rate of the tasks up to 15-30% in addition to the results accomplished by initial scheduling depending on the amount of energy harvested.

## Update Vehicle Traffic Routing Using Ant Colony Optimization Algorithm

Update Vehicle Traffic Routing Using Ant Colony Optimization Algorithm is to implement the solution of combinatorial problem, based on the heuristic behavior of ant. This paper focuses on a highly developed solution procedure using ACO algorithm. This helps to solve routing problems easily. It also reflects the method considering flow, distance, cost, and emergency etc. Here, a new algorithm named UVTR (Update Vehicle Traffic Routing) is represented to overcome the complexity of the previous algorithm. It yields the typical process for removing traffic problems in case of flow, distance, cost etc. This formulation is represented with systematic rules based case study for the Dhaka City.

## User Selection and Scheduling Algorithms for MIMO-BC Systems

This book investigates the problem of user selection and scheduling in MIMO-BC. A low-complexity user selection algorithm is proposed when the BS has perfect channel-state information and the performance of the proposed algorithm with linear and non-linear precoding techniques is evaluated. A signalling scheme for the MIMO-BC systems in the absence of perfect CSIT is presented. A novel transmit-antenna selection scheme is proposed. The performance of the proposed scheme with different user selection algorithms and linear receivers is evaluated. The book considers a cross-layer scheduling approach in order to provide QoS guarantees to the users. A scheduling algorithm, multi-user ?-Rule scheduling, is proposed with the capability of maximizing the system throughput and providing QoS to the users. The effect of rate estimation on the performance of the scheduling algorithm is analyzed along with the effect of the variability in the allocated rates on the mean queue lengths of the users. It is shown that by increasing the fairness, the variability in rate allocation decreases, which results in smaller queue sizes for the users with marginal reduction in the sum-capacity of the system.

## A Novel Fair Channel Access Algorithm For Cellular Networks

In this literature, the author evaluates some traditional contentious and non-contentious channel access scheduling algorithms and exposes their inadequacy when minimizing lengthy delays in a multimedia cellular environment. Addressing these inadequacies, a novel approach based on a modified operating systems process scheduling algorithm is proposed. The resulting Delay Weighted Priority Scheduling (DWPS) algorithm is evaluated in comparison to the traditional round-robin and random access scheduling algorithms in a simulated multimedia cellular environment and demonstrates a marked improvement in performance.

## A Genetic Algorithm for Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP) aims to find a schedule of minimum makespan by starting each activity such that resource constraints and precedence constraints are respected. However, as the problem is NP-hard in the strong sense, the performance of exact procedures is limited and can only solve small-sized project networks. In this study, the proposed genetic algorithm (GA) aims to find near-optimal solutions and also overcomes the poor performance of the exact procedures for large-sized project networks. The proposed algorithm employs two independent populations: left population that consist of left-justified (forward) schedules and right population that consist of right-justified (backward) schedules. The repeated cycle updates the left (right) population by maintaining it with transformed right (left) individuals. By doing so, the algorithm uses two different scheduling characteristics. Also, the algorithm provides a new two-point crossover operator that selects the parents according to their resource requirement mechanism. The experiment results show that the suggested algorithm outperforms the well-known commercial software packages.

## Scheduling for Real-Time Multiprocessor System

A scheduling algorithm schedules a set of tasks in such way that the tasks are completed before their deadlines reached. There are varieties of algorithms for scheduling of periodic tasks on multiprocessor under partitioning scheme or global scheduling scheme. The most common scheduling algorithms are: Rate Monotonic (RM), Deadline Monotonic (DM), Earliest Deadline First (EDF) and Least Laxity First (LLF). In this book, we have proposed a new algorithm titled as D_EDF which is modified conventional EDF algorithm. The proposed algorithm along with EDF, LLF, RM, DM algorithms are simulated and tested for independent, preemptive, periodic tasks on tightly coupled real-time multiprocessor system under global scheduling. From experiments and result analysis it concludes that the proposed algorithm is very efficient in both underloaded and overloaded conditions. The algorithm proposed in this book; perform quite well during overloaded conditions. The algorithm is truly dynamic as it can work with available number of processors.